Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage
نویسندگان
چکیده
T cells rapidly reposition their centrosome to the center of the immunological synapse (IS) to drive polarized secretion in the direction of the bound target cell. Using an optical trap for spatial and temporal control over target presentation, we show that centrosome repositioning in Jurkat T cells exhibited kinetically distinct polarization and docking phases and required calcium flux and signaling through both the T cell receptor and integrin to be robust. In "frustrated" conjugates where the centrosome is stuck behind the nucleus, the center of the IS invaginated dramatically to approach the centrosome. Consistently, imaging of microtubules during normal repositioning revealed a microtubule end-on capture-shrinkage mechanism operating at the center of the IS. In agreement with this mechanism, centrosome repositioning was impaired by inhibiting microtubule depolymerization or dynein. We conclude that dynein drives centrosome repositioning in T cells via microtubule end-on capture-shrinkage operating at the center of the IS and not cortical sliding at the IS periphery, as previously thought.
منابع مشابه
Casein kinase I delta controls centrosome positioning during T cell activation
Although termed central body, the centrosome is located off-center in many polarized cells. T cell receptor (TCR) engagement by antigens induces a polarity switch in T cells. This leads to the recruitment of the centrosome to the immunological synapse (IS), a specialized cell-cell junction. Despite much recent progress, how TCR signaling triggers centrosome repositioning remains poorly understo...
متن کاملINF2 promotes the formation of detyrosinated microtubules necessary for centrosome reorientation in T cells
T cell antigen receptor-proximal signaling components, Rho-family GTPases, and formin proteins DIA1 and FMNL1 have been implicated in centrosome reorientation to the immunological synapse of T lymphocytes. However, the role of these molecules in the reorientation process is not yet defined. Here we find that a subset of microtubules became rapidly stabilized and that their α-tubulin subunit pos...
متن کاملMicrotubule release from the centrosome in migrating cells
In migrating cells, force production relies essentially on a polarized actomyosin system, whereas the spatial regulation of actomyosin contraction and substrate contact turnover involves a complex cooperation between the microtubule (MT) and the actin filament networks (Goode, B.L., D.G. Drubin, and G. Barnes. 2000. Curr. Opin. Cell Biol., 12:63-71). Targeting and capture of MT plus ends at the...
متن کاملReorganization of the centrosome and associated microtubules during the morphogenesis of a mouse cochlear epithelial cell.
Reorganization of centrosomal microtubule-organizing centres and the minus ends of microtubules occurs as the centrosomal ends of large microtubule bundles are repositioned and anchored to cell junctions in certain epithelial cells called inner pillar cells in the mouse organ of Corti. The microtubule bundle that assembles in each cell consists of two distinct microtubule arrays that run closel...
متن کاملNucleation and capture of large cell surface-associated microtubule arrays that are not located near centrosomes in certain cochlear epithelial cells.
This report deals with the as yet undetermined issue of whether cell-surface associated microtubules in certain cochlear epithelial cells are centrosomally nucleated and subsequently migrate to microtubule-capturing sites located at the surface regions in question. Alternatively, the cells may possess additional nucleating sites which are noncentrosomal and surface-associated. These alternative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 202 شماره
صفحات -
تاریخ انتشار 2013